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Using the anti–de Sitter/conformal field theory correspondence, we relate the shear viscosity η of
the finite-temperature N = 4 supersymmetric Yang-Mills theory in the large N , strong-coupling
regime with the absorption cross section of low-energy gravitons by a near-extremal black three-
brane. We show that in the limit of zero frequency this cross section coincides with the area of the
horizon. From this result we find η = π

8
N2T 3. We conjecture that for finite ’t Hooft coupling g2

YMN
the shear viscosity is η = f(g2

YMN)N2T 3, where f(x) is a monotonic function that decreases from
O(x−2 ln−1(1/x)) at small x to π/8 when x → ∞.

Introduction.—At finite temperatures, the large dis-
tance, long time behavior of gauge theories is described,
as in any other fluid, by a hydrodynamic theory [1]. To
write down the hydrodynamic equations one has to know
the thermodynamics (i.e., the equation of state) of the
medium, as well as the transport coefficients: the shear
and the bulk viscosities, the electrical conductivity [in
the presence of a U(1) gauge group], and the diffusion
constants (in the presence of conserved global charges).
Knowledge of these quantities in hot gauge theories is
crucial for numerous applications, the most notable of
which belong to the physics of the electroweak phase
transition in the early Universe [2] and of the quark-gluon
plasma possibly created in heavy-ion collisions [3].

When the gauge coupling is small (which requires, in
the case of QCD, temperatures much larger than the con-
finement scale), both the equation of state and the trans-
port coefficients are calculable perturbatively. At strong
coupling (i.e., at temperatures not much larger than the
confinement scale), thermodynamics can be found non-
perturbatively by lattice simulations, but transport co-
efficients are beyond the reach of all current numerical
techniques. This situation is very unfortunate, since the
quark-gluon plasma one hopes to create in heavy-ion ex-
periments has relatively low temperature at which the
perturbation theory works very poorly.

Lacking methods to reliably compute the transport co-
efficients of finite-temperature QCD, one should try to
gain insight into models where these coefficients can be
computed nonperturbatively. Recently, powerful tech-
niques based on the anti–de Sitter/conformal field theory
(AdS/CFT) correspondence have been developed, estab-
lishing, in particular, the connection between the N = 4
supersymmetric Yang-Mills (SYM) theory in the large
coupling, large N limit and classical ten-dimensional
gravity on the background of black three-branes [4–7].
This allows one to perform analytical calculations in a
strongly coupled four-dimensional gauge theory.

In this Letter, we compute the shear viscosity η of the

strongly coupled finite-temperature N = 4 SYM theory
(the bulk viscosity of this theory vanishes due to scale in-
variance). We first relate, using previously known results
from the AdS/CFT correspondence, the shear viscosity
with the absorption cross section of low-energy gravitons
falling perpendicularly onto near-extremal black three-
branes. We further show that this cross section is equal
to the the area of the horizon, in a way very similar to
the case of black holes [8]. These facts provide enough in-
formation for us to find that η = π

8 N2T 3, provided both
the ’t Hooft coupling and N are large. Remarkably, the
shear viscosity approaches a constant value in the large
’t Hooft coupling limit, and this value is related to the
area of the horizon of the black brane.

The viscosity.—To start our discussion, we briefly re-
view the notion of viscosity in the context of finite-
temperature field theory. Consider a plasma slightly out
of equilibrium, so that there is local thermal equilibrium
everywhere but the temperature and the mean velocity
slowly vary in space. We define, at any point, the local
rest frame as the one where the three-momentum den-
sity vanishes: T0i = 0. The stress tensor, in this frame,
is given by the constitutive relation,

Tij = δijp − η

(

∂iuj + ∂jui −
2

3
δij∂kuk

)

−ζδij∂kuk , (1)

where ui is the flow velocity, p is the pressure, and η
and ζ are, by definition, the shear and bulk viscosities
respectively. In conformal field theories like the N = 4
SYM theory, the energy momentum tensor is traceless,
T µ

µ = 0, so ε ≡ T00 = 3p and the bulk viscosity vanishes
identically, ζ = 0.

All kinetic coefficients can be expressed, through Kubo
relations, as the correlation functions of the correspond-
ing currents [9]. For the shear viscosity, the correlator is
that of the stress tensor,

η = lim
ω→0

1

2ω

∫

dt dx eiωt〈[Txy(t,x), Txy(0, 0)]〉
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= lim
ω→0

1

2ωi
[GA(ω) − GR(ω)] , (2)

where the average 〈. . .〉 is taken in the equilibrium ther-
mal ensemble, and GA and GR are the advanced and
retarded Green functions of Txy, respectively. In Eq. (2),
the Green functions are computed at zero spatial mo-
mentum. Though Eq. (2) can, in principle, be used to
compute the viscosity in weakly coupled field theories,
this direct method is usually very cumbersome, since it
requires resummation of an infinite series of Feynman
graphs. This calculation has been explicitly carried out
only for scalar theories [10]. A more practical method is
to use the kinetic Boltzmann equation, which gives the
same results as the diagrammatic approach [11].

For gauge theories at weak coupling, g2N ≪ 1, where
throughout this paper g ≡ gYM is the gauge coupling, the
shear viscosity has the following parametric behavior,

η = C
N2T 3

(g2N)2 ln(1/g2N)
. (3)

Basically, η is proportional to the product of the energy
density ε ∼ N2T 4 and the transport mean free time τ ∼
[(g2N)2 ln(1/g2N)T ]−1. The numerical coefficient C in
Eq. (3), in principle, can be computed by solving the
linearized Boltzmann equation [12].

The relation to graviton absorption.—The key obser-
vation underlying this work is that the right hand side
of the Kubo formula (2) is known to be proportional to
the classical absorption cross section of gravitons by black
three-branes [13,14]. For completeness, we recall here the
basic argument leading to this correspondence. Consider,
in type IIB string theory, a configuration of N D3-branes
stacked on top of each other. The low-energy theory liv-
ing on the branes is the N = 4 U(N) SYM theory. On
the other hand, if N is large, the stack of D3-branes
has large tension, which curves space-time. In the limit
of large ’t Hooft coupling g2N , the three-brane geometry
has small curvature and can be described by supergravity.
Therefore, we have two descriptions of the same physics
in terms of strongly coupled gauge theory on the branes
and classical gravity on a certain background.

If one sends a graviton to the brane, there is some prob-
ability that it will be absorbed. On the gravity side, the
absorption cross section can be calculated by solving the
wave equation on the background metric. On the gauge
theory side, the rate of graviton absorption measures the
imaginary part of the stress tensor–stress tensor corre-
lator, since gravitons polarized parallel to the brane are
coupled to the stress-energy tensor of the degrees of free-
dom on the brane. The relation between the absorption
cross section σ(ω) of a graviton with energy ω, polar-
ized parallel to the brane (say, along the xy directions)
and falling at a right angle on the brane is related to the
correlator in field theory as [13,14]

σ(ω) =
κ2

ω

∫

dt dx eiωt〈[Txy(t,x), Txy(0, 0)]〉 , (4)

where κ =
√

8πG, G being the ten-dimensional gravita-
tional constant. The relation (4) has been explicitly ver-
ified for zero-temperature field theory (or extremal black
branes, in the gravity language) [13,14]. Such a check is
possible because there is a nonrenormalization theorem
for the correlator of the stress-energy tensor [15].

At finite temperature T , Eq. (4) relates the graviton
absorption cross section by a near-extremal black brane
having the Hawking temperature equal to T with a corre-
lator in the hot SYM theory [16]. Since there is no super-
symmetry and no nonrenormalization theorem is known
to work at finite temperature, one cannot explicitly verify
the relation (4). We instead view Eq. (4) as a prediction
of theory. In particular, taking the ω → 0 limit one
can relate σ(ω = 0) with the shear viscosity of hot SYM
plasma,

η =
1

2κ2
σ(0) . (5)

Equation (5) implies that, for nonextremal black branes,
the graviton absorption cross section must not vanish in
the limit of zero frequency (in contrast to the extremal
case where σ(ω) ∼ ω3 at small ω [13,14]), and, by com-
puting the zero-frequency value of σ one obtains the shear
viscosity of the hot SYM plasma. The problem of com-
puting the shear viscosity is now reduced to a problem
of classical gravity.

The metric of a nonextremal black three-brane has the
form [17,18]

ds2 = H−1/2(r)[−f(r)dt2 + dx2]

+H1/2(r)[f−1(r)dr2 + r2dΩ2
5] , (6)

where H(r) = 1 + R4/r4 and f(r) = 1 − r4
0/r4. The

extremal case corresponds to r0 = 0; the limit relevant
for us is the near-extremal one, r0 ≪ R. This metric has
a horizon at r = r0. From the existence of this horizon
one should expect σ(0) to be nonvanishing. Running
ahead, we will show, by solving the wave equation on the
metric (6), that σ(0) is equal to the area of the horizon,

σ(0) = π3r3
0R

2 (7)

(the numerical coefficient π3 is simply the area of the
unit five-sphere). Using the formula for the Hawking
temperature of the metric (6),

T =
r0

πR2
, (8)

and the relation between R and N which is obtained
by identifying the Arnowitt-Deser-Misner mass per unit
volume of the three-brane with the tension of a stack of
N D3-branes [13],
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R4 =
κN

2π5/2
, (9)

we find the shear viscosity to be

η =
π

8
N2T 3 . (10)

This is the main result of the paper. Up to a constant,
the shear viscosity is equal to the entropy density [19,20].
Both quantities are proportional to the area of the hori-
zon.

Solution to the radial wave equation.—Now let us
show how Eq. (7) is obtained. We have to solve the
s-wave radial equation for a minimally coupled scalar
(such as the graviton polarized parallel to the brane),
∂µ(

√−ggµν∂νφ) = 0. In the metric (6) this equation
acquires the form

φ′′ +
5r4 − r4

0

r(r4 − r4
0)

φ′ + ω2 r4(r4 + R4)

(r4 − r4
0)

2
φ = 0 . (11)

The method we use to solve Eq. (11) is the same matching
method that was used in the extremal case [13,14]. Since
ultimately we are interested in the limit ω → 0, we will
assume ω ≪ T . More details about our method, as well
as the solution to the radial equation in the opposite limit
ω ≫ T and for higher partial waves, can be found in Ref.
[21]. Earlier attempts to compute the absorption rate
by nonextremal black branes were made in Refs. [22].
As in the extremal case, we search for the solution in
several regions and match the result wherever the regions
overlap. Let us go from small r to large r, starting from
the horizon r = r0. The first region is the one just outside
the horizon: r > r0, r − r0 ≪ r0. In this case Eq. (11)
has the form

φ′′ +
φ′

r − r0
+

λ2

16

φ

(r − r0)2
= 0 , (12)

where λ = ω/(πT ) ≪ 1. The solution to Eq. (12) is

φ = A

(

1 − r0

r

)

−iλ/4

, (13)

where we have chosen the sign of the exponent so that the
solution corresponds to an incoming wave at the horizon.
When λ is small, (13) is basically a constant, A, except
for an exponentially small region near r0. In the next
region, r0 < r ≪ ω−1 (excluding r exponentially closed
to r0), the term proportional to ω2 in the left-hand side
of Eq. (11) can be dropped. Indeed,

ω2r8(r4 − r4
0)

−2 ≪ (r − r0)
−2 (14)

due to r ≪ ω−1, and

ω2r4R4(r4 − r4
0)

−2 ≪ (r − r0)
−2 (15)

since ω ≪ T ∼ r0R
−2. Equation (11) now has the form

φ′′ +
5r4 − r4

0

r(r4 − r4
0)

φ′ = 0 , (16)

which possesses a trivial solution,

φ = A , (17)

which matches smoothly with Eq. (13). Finally, in the
outermost region, r ≫ R ≫ r0, Eq. (11) is simplified to

d2φ

dr2
+

5

r

dφ

dr
+ ω2φ = 0 , (18)

which can be solved in terms of the Bessel functions,

φ(r) = α
J2(ωr)

(ωr)2
+ β

Y2(ωr)

(ωr)2
, r ≫ R . (19)

The regimes of validity of Eq. (17), r0 < r ≪ ω−1, and of
Eq. (19), r ≫ R, has an overlap since ω−1 ≫ R (this is
the consequence of R ≫ r0 and ω ≪ T ). In order for Eq.
(19) to match with Eq. (17) in the overlapping region,
one should require

α = 8A, β = 0 . (20)

The field at large distances can be decomposed into an
incoming wave and an outgoing wave,

φ(r) = 4A

[

H
(1)
2 (ωr)

(ωr)2
+

H
(2)
2 (ωr)

(ωr)2

]

. (21)

The absorption probability P is the ratio of the flux
at r = r0 from Eq. (13) and the flux from the incoming
wave in Eq. (21). We find

P =
π

32
ω5r3

0R
2 . (22)

Since the absorption cross section σ is related to P by [8]

σ =
32π2

ω5
P , (23)

we arrive to Eq. (7), which coincides with the area of the
horizon. This is very similar to the universal result for
black holes [8].

Notice that in deriving Eq. (7) we require ω to be
much smaller than the Hawking temperature. The ab-
sorption cross section will deviate substantially from the
zero-frequency limit if ω is of order T . In particular,
the next correction to Eq. (7) is of order ω2/T 2 with a
computable coefficient [21].

Discussion.—We have shown that the shear viscosity
can be computed in the strongly coupled N = 4 SYM
theory from the AdS/CFT correspondence. Now let us
try to interpret the result (10). The power of T in η is
completely fixed by the dimensionality of η and the scale
invariance of the theory. The factor N2 apparently comes
from the number of degrees of freedom in the plasma. It
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is remarkable that the shear viscosity approaches a con-
stant value as one sends the ’t Hooft coupling to infinity.
From the relation η ∼ ετ , one can interpret this behavior
as the indication that the “relaxation time” τ remains of
order T−1 (but not much smaller) in the strong coupling
limit. Since the inverse relaxation time is comparable
to the energy per degree of freedom, the strongly cou-
pled plasma cannot be viewed as a collection of particles,
and the formula η ∼ ετ does not applies in the strict
sense. However, one should expect that the counting of
the powers of N still works. This counting, combined
with the expressions for η is the weak-coupling [Eq. (3)]
and strong-coupling [Eq. (10)] limits, suggests that for
finite ’t Hooft coupling g2N the shear viscosity has the
form

η = f(g2N)N2T 3 , (24)

where f(x) ∼ x−2 ln−1(1/x) when x ≪ 1 and f(x) = π/8
when x ≫ 1. It is most likely that f(x) is a monotonic
function of x. One way to verify this conjecture is to com-
pute the O(1/g2N) correction to η in the strong coupling
limit. If f(x) is monotonic, then this correction must be
positive. This is analogous to the behavior of the free
energy [20], except that at small coupling η → ∞, while
the free energy remains finite.

Recalling that σ(ω) deviates substantially from σ(0)
when ω ∼ T , we see that the hydrodynamic theory
can describe processes occuring during times much larger
than T−1, but breaks down for those whose typical time
scale is of order or less than T−1. One also should ex-
pect hydrodynamics to work at spatial distances much
larger than T−1, but not at distances of order or less
than T−1. This is consistent with T−1 playing the role
of the relaxation time in the limit g2N → ∞. There is
apparently no separation of scales in the strong coupling
regime that would make a kinetic description possible:
T−1 is the only time/length scale. Thus, the viscosity η
cannot be computed from a Boltzmann-type equation.

In this paper, we have confined our attention to the
most important transport coefficient — the shear vis-
cosity. As mentioned above, the bulk viscosity vanishes
identically due to the exact scale invariance of the N = 4
SYM theory. It would be useful to compute other trans-
port coefficients in this theory (for example, the diffusion
constant of the R charges) at strong coupling using the
AdS/CFT correspondence.
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